skip to main content


Search for: All records

Creators/Authors contains: "Wang, Yipeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
    Network function virtualization (NFV) technologyattracts tremendous interests from telecommunication industryand data center operators, as it allows service providers to assignresource for Virtual Network Functions (VNFs) on demand,achieving better flexibility, programmability, and scalability. Toimprove server utilization, one popular practice is to deploy besteffort (BE) workloads along with high priority (HP) VNFs whenhigh priority VNF’s resource usage is detected to be low. The keychallenge of this deployment scheme is to dynamically balancethe Service level objective (SLO) and the total cost of ownership(TCO) to optimize the data center efficiency under inherentlyfluctuating workloads. With the recent advancement in deepreinforcement learning, we conjecture that it has the potential tosolve this challenge by adaptively adjusting resource allocationto reach the improved performance and higher server utilization.In this paper, we present a closed-loop automation systemRLDRM1to dynamically adjust Last Level Cache allocationbetween HP VNFs and BE workloads using deep reinforcementlearning. The results demonstrate improved server utilizationwhile maintaining required SLO for the HP VNFs. 
    more » « less